Robust Semantic Analysis for Unseen Data in FrameNet
نویسندگان
چکیده
We present a novel method for FrameNetbased semantic role labeling (SRL), focusing on limitations posed by the limited coverage of available annotated data. Our SRL model is based on Bayesian clustering and has the advantage of being very robust in the face of unseen and incomplete data. Frame labeling and role labeling are modeled in like fashions, allowing cascading classification scenarios. The model is shown to perform especially well on unseen data. In addition, we show that for seen data, predicting semantic types for roles improves role labeling performance.
منابع مشابه
Non-atomic Classification to Improve a Semantic Role Labeler for a Low-resource Language
Semantic role classification accuracy for most languages other than English is constrained by the small amount of annotated data. In this paper, we demonstrate how the frame-to-frame relations described in the FrameNet ontology can be used to improve the performance of a FrameNet-based semantic role classifier for Swedish, a low-resource language. In order to make use of the FrameNet relations,...
متن کاملSemEval-2007 Task 19: Frame Semantic Structure Extraction
This task consists of recognizing words and phrases that evoke semantic frames as defined in the FrameNet project (http: //framenet.icsi.berkeley.edu), and their semantic dependents, which are usually, but not always, their syntactic dependents (including subjects). The training data was FN annotated sentences. In testing, participants automatically annotated three previously unseen texts to ma...
متن کاملFrame-Semantic Parsing
Frame semantics is a linguistic theory that has been instantiated for English in the FrameNet lexicon. We solve the problem of frame-semantic parsing using a two-stage statistical model that takes lexical targets (i.e., content words and phrases) in their sentential contexts and predicts frame-semantic structures. Given a target in context, the first stage disambiguates it to a semantic frame. ...
متن کاملSemantic Role Labeling via FrameNet, VerbNet and PropBank
This article describes a robust semantic parser that uses a broad knowledge base created by interconnecting three major resources: FrameNet, VerbNet and PropBank. The FrameNet corpus contains the examples annotated with semantic roles whereas the VerbNet lexicon provides the knowledge about the syntactic behavior of the verbs. We connect VerbNet and FrameNet by mapping the FrameNet frames to th...
متن کاملPutting Pieces Together: Combining FrameNet, VerbNet and WordNet for Robust Semantic Parsing
This paper describes our work in integrating three different lexical resources: FrameNet, VerbNet, and WordNet, into a unified, richer knowledge-base, to the end of enabling more robust semantic parsing. The construction of each of these lexical resources has required many years of laborious human effort, and they all have their strengths and shortcomings. By linking them together, we build an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011